Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Free Radic Biol Med ; 220: 92-110, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663829

ABSTRACT

Reactive oxygen species (ROS) are formed in plant cells continuously. When ROS production exceeds the antioxidant capacity of the cells, oxidative stress develops which causes damage of cell components and may even lead to the induction of programmed cell death (PCD). The levels of ROS production increase upon abiotic stress, but also during pathogen attack in response to elicitors, and upon application of toxic compounds such as synthetic herbicides or natural phytotoxins. The commercial value of many synthetic herbicides is based on weed death as result of oxidative stress, and for a number of them, the site and the mechanism of ROS production have been characterized. This review summarizes the current knowledge on ROS production in plants subjected to different groups of synthetic herbicides and natural phytotoxins. We suggest that the use of ROS-specific fluorescent probes and of ROS-specific marker genes can provide important information on the mechanism of action of these toxins. Furthermore, we propose that, apart from oxidative damage, elicitation of ROS-induced PCD is emerging as one of the important processes underlying the action of herbicides and phytotoxins.

2.
Toxins (Basel) ; 15(4)2023 03 23.
Article in English | MEDLINE | ID: mdl-37104172

ABSTRACT

Phytotoxic macrolides attract attention as prototypes of new herbicides. However, their mechanisms of action (MOA) on plants have not yet been elucidated. This study addresses the effects of two ten-membered lactones, stagonolide A (STA) and herbarumin I (HBI) produced by the fungus Stagonospora cirsii, on Cirsium arvense, Arabidopsis thaliana and Allium cepa. Bioassay of STA and HBI on punctured leaf discs of C. arvense and A. thaliana was conducted at a concentration of 2 mg/mL to evaluate phenotypic responses, the content of pigments, electrolyte leakage from leaf discs, the level of reactive oxygen species, Hill reaction rate, and the relative rise in chlorophyll a fluorescence. The toxin treatments resulted in necrotic and bleached leaf lesions in the dark and in the light, respectively. In the light, HBI treatment caused the drop of carotenoids content in leaves on both plants. The electrolyte leakage caused by HBI was light-dependent, in contrast with that caused by STA. Both compounds induced light-independent peroxide generation in leaf cells but did not affect photosynthesis 6 h after treatment. STA (10 µg/mL) caused strong disorders in root cells of A. thaliana leading to the complete dissipation of the mitochondrial membrane potential one hour post treatment, as well as DNA fragmentation and disappearance of acidic vesicles in the division zone after 8 h; the effects of HBI (50 µg/mL) were much milder. Furthermore, STA was found to inhibit mitosis but did not affect the cytoskeleton in cells of root tips of A. cepa and C. arvense, respectively. Finally, STA was supposed to inhibit the intracellular vesicular traffic from the endoplasmic reticulum to the Golgi apparatus, thus interfering with mitosis. HBI is likely to have another main MOA, probably inhibiting the biosynthesis of carotenoids.


Subject(s)
Arabidopsis , Ascomycota , Toxins, Biological , Chlorophyll A , Lactones/chemistry , Photosynthesis , Toxins, Biological/pharmacology , Plant Leaves , Carotenoids/pharmacology , Electrolytes , Chlorophyll
3.
Plants (Basel) ; 11(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35050085

ABSTRACT

The microalga Haematococcus lacustris (formerly H. pluvialis) is able to accumulate high amounts of the carotenoid astaxanthin in the course of adaptation to stresses like salinity. Technologies aimed at production of natural astaxanthin for commercial purposes often involve salinity stress; however, after a switch to stressful conditions, H. lacustris experiences massive cell death which negatively influences astaxanthin yield. This study addressed the possibility to improve cell survival in H. lacustris subjected to salinity via manipulation of the levels of autophagy using AZD8055, a known inhibitor of TOR kinase previously shown to accelerate autophagy in several microalgae. Addition of NaCl in concentrations of 0.2% or 0.8% to the growth medium induced formation of autophagosomes in H. lacustris, while simultaneous addition of AZD8055 up to a final concentration of 0.2 µM further stimulated this process. AZD8055 significantly improved the yield of H. lacustris cells after 5 days of exposure to 0.2% NaCl. Strikingly, this occurred by acceleration of cell growth, and not by acceleration of aplanospore formation. The level of astaxanthin synthesis was not affected by AZD8055. However, cytological data suggested a role of autophagosomes, lysosomes and Golgi cisternae in cell remodeling during high salt stress.

4.
Front Plant Sci ; 12: 695415, 2021.
Article in English | MEDLINE | ID: mdl-34394148

ABSTRACT

The ability to develop secondary (post-cytokinetic) plasmodesmata (PD) is an important evolutionary advantage that helps in creating symplastic domains within the plant body. Developmental regulation of secondary PD formation is not completely understood. In flowering plants, secondary PD occur exclusively between cells from different lineages, e.g., at the L1/L2 interface within shoot apices, or between leaf epidermis (L1-derivative), and mesophyll (L2-derivative). However, the highest numbers of secondary PD occur in the minor veins of leaf between bundle sheath cells and phloem companion cells in a group of plant species designated "symplastic" phloem loaders, as opposed to "apoplastic" loaders. This poses a question of whether secondary PD formation is upregulated in general in symplastic loaders. Distribution of PD in leaves and in shoot apices of two symplastic phloem loaders, Alonsoa meridionalis and Asarina barclaiana, was compared with that in two apoplastic loaders, Solanum tuberosum (potato) and Hordeum vulgare (barley), using immunolabeling of the PD-specific proteins and transmission electron microscopy (TEM), respectively. Single-cell sampling was performed to correlate sugar allocation between leaf epidermis and mesophyll to PD abundance. Although the distribution of PD in the leaf lamina (except within the vascular tissues) and in the meristem layers was similar in all species examined, far fewer PD were found at the epidermis/epidermis and mesophyll/epidermis boundaries in apoplastic loaders compared to symplastic loaders. In the latter, the leaf epidermis accumulated sugar, suggesting sugar import from the mesophyll via PD. Thus, leaf epidermis and mesophyll might represent a single symplastic domain in Alonsoa meridionalis and Asarina barclaiana.

5.
J Exp Bot ; 72(15): 5534-5552, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33974689

ABSTRACT

In mature leaves, cell-to-cell transport via plasmodesmata between mesophyll cells links the production of assimilates by photosynthesis with their export to sink organs. This study addresses the question of how signals derived from chloroplasts and photosynthesis influence plasmodesmata permeability. Cell-to-cell transport was analyzed in leaves of the Arabidopsis chlorophyll b-less ch1-3 mutant, the same mutant complemented with a cyanobacterial CAO gene (PhCAO) overaccumulating chlorophyll b, the trxm3 mutant lacking plastidial thioredoxin m3, and the ntrc mutant lacking functional NADPH:thioredoxin reductase C. The regulation of plasmodesmata permeability in these lines could not be traced back to the reduction state of the thioredoxin system or the types and levels of reactive oxygen species produced in chloroplasts; however, it could be related to chloroplast ATP and NADPH production. The results suggest that light enables plasmodesmata closure via an increase in the ATP and NADPH levels produced in photosynthesis, providing a control mechanism for assimilate export based on the rate of photosynthate production in the Calvin-Benson cycle. The level of chlorophyll b influences plasmodesmata permeability via as-yet-unidentified signals. The data also suggest a role of thioredoxin m3 in the regulation of cyclic electron flow around photosystem I.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Adenosine Triphosphate/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , NADP/metabolism , Oxidation-Reduction , Photosynthesis , Plant Leaves/metabolism , Plasmodesmata/metabolism
6.
Int J Mol Sci ; 21(9)2020 May 03.
Article in English | MEDLINE | ID: mdl-32375245

ABSTRACT

Singlet oxygen (1O2) refers to the lowest excited electronic state of molecular oxygen. It easily oxidizes biological molecules and, therefore, is cytotoxic. In plant cells, 1O2 is formed mostly in the light in thylakoid membranes by reaction centers of photosystem II. In high concentrations, 1O2 destroys membranes, proteins and DNA, inhibits protein synthesis in chloroplasts leading to photoinhibition of photosynthesis, and can result in cell death. However, 1O2 also acts as a signal relaying information from chloroplasts to the nucleus, regulating expression of nuclear genes. In spite of its extremely short lifetime, 1O2 can diffuse from the chloroplasts into the cytoplasm and the apoplast. As shown by recent studies, 1O2-activated signaling pathways depend not only on the levels but also on the sites of 1O2 production in chloroplasts, and can activate two types of responses, either acclimation to high light or programmed cell death. 1O2 can be produced in high amounts also in root cells during drought stress. This review summarizes recent advances in research on mechanisms and sites of 1O2 generation in plants, on 1O2-activated pathways of retrograde- and cellular signaling, and on the methods to study 1O2 production in plants.


Subject(s)
Chloroplasts/metabolism , Singlet Oxygen/metabolism , Apoptosis , Oxidative Stress , Signal Transduction
7.
Funct Plant Biol ; 45(4): 453-463, 2018 Mar.
Article in English | MEDLINE | ID: mdl-32290984

ABSTRACT

The barley (Hordeum vulgare L.) chlorina f2 3613 mutant exhibits low photosynthesis and slow growth. This results from downregulation of the levels of photosynthetic antenna proteins caused by the absence of chl b, the major regulator of photosynthetic antennae in land plants. Here, we demonstrate that, when grown in the field in full sunlight, this mutant displays a changed pattern of stomatal responses compared with the parental wild-type cultivar Donaria. However, stomatal regulation of chlorina f2 3613 plants was restored when plants were placed under a shade cover for several days. The shade cover reduced incident PAR from 2000-2200µmolm-2s-1 to 800-880µmolm-2s-1 as measured at noon. Contents of ABA, the xanthophyll precursors of ABA biosynthesis and minor antenna proteins, as well as reactive oxygen species levels in stomata and the sensitivity of stomata to exogenously supplied ABA, were determined in leaves of wild-type Donaria and chlorina f2 3613 before and after shading. The results support the view that the restoration of stomatal control in barley chlorina f2 3613 is correlated with an increase in the levels of the minor antenna protein Lhcb6, which has recently been implicated in the enhancement of stomatal sensitivity to ABA in Arabidopsis thaliana (L.) Heynh.

8.
Funct Plant Biol ; 45(2): 28-46, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32291019

ABSTRACT

Environmental stresses such as salinity, drought, oxidants, heavy metals, hypoxia, extreme temperatures and others can induce autophagy and necrosis-type programmed cell death (PCD) in plant roots. These reactions are accompanied by the generation of reactive oxygen species (ROS) and ion disequilibrium, which is induced by electrolyte/K+ leakage through ROS-activated ion channels, such as the outwardly-rectifying K+ channel GORK and non-selective cation channels. Here, we discuss mechanisms of the stress-induced ion disequilibrium and relate it with ROS generation and onset of morphological, biochemical and genetic symptoms of autophagy and PCD in roots. Based on our own data and that in the literature, we propose a hypothesis on the induction of autophagy and PCD in roots by loss of cytosolic K+. To support this, we present data showing that in conditions of salt stress-induced autophagy, gork1-1 plants lacking root K+ efflux channel have fewer autophagosomes compared with the wild type. Overall, literature analyses and presented data strongly suggest that stress-induced root autophagy and PCD are controlled by the level of cytosolic potassium and ROS.

9.
Funct Plant Biol ; 45(2): 247-258, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32291039

ABSTRACT

In plant cells, peroxisomes participate in the metabolism of reactive oxygen species (ROS). One of the major regulators of cellular ROS levels - catalase (CAT) - occurs exclusively in peroxisomes. CAT activity is required for immunity-triggered autophagic programmed cell death (PCD). Autophagy has been recently demonstrated to represent a route for degradation of peroxisomes in plant cells. In the present study, the dynamics of the cellular peroxisome pool in tobacco BY-2 cell suspension cultures were used to analyse the effects of inhibition of basal autophagy with special attention to CAT activity. Numbers of peroxisomes per cell, levels of CAT protein and activity, cell viability, ROS levels and expression levels of genes encoding components of antioxidant system were analysed upon application of 3-methyladenine (3-MA), an inhibitor of autophagy, and/or aminotriazole (AT), an inhibitor of CAT. When applied separately, 3-MA and AT led to an increase in cell death, but this effect was attenuated by their simultaneous application. The obtained data suggest that both the levels of CAT protein in peroxisomes as well as CAT activity modulate the onset of cell death in tobacco BY-2 cells via ROS levels and autophagy.

10.
Photosynth Res ; 133(1-3): 357-370, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28382592

ABSTRACT

The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.


Subject(s)
Arabidopsis/metabolism , Chlorophyll/metabolism , Hordeum/metabolism , Lipids/chemistry , Mutation/genetics , Photosynthesis , Thylakoids/metabolism , Arabidopsis/radiation effects , Fluorescence , Fluorescence Recovery After Photobleaching , Hordeum/radiation effects , Light , Light-Harvesting Protein Complexes/metabolism , Oxygenases/metabolism , Photosynthesis/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plastoquinone/metabolism , Thylakoids/radiation effects
11.
Plant Signal Behav ; 12(4): e1300732, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28272988

ABSTRACT

In plants, organogenesis and specification of cell layers and tissues rely on precise symplastic delivery of regulatory molecules via plasmodesmata. Accordingly, abundance and aperture of plasmodesmata at individual cell boundaries should be controlled by the plant. Recently, studies in Arabidopsis established reactive oxygen species as major regulators of plasmodesmata formation and gating. We show that in a barley mutant deficient in the synthesis of chlorophyll b, the numbers of plasmodesmata in leaves and in the shoot apical meristem are significantly higher than in the corresponding wild type, probably due to redox imbalance in the mutant. The resulting disturbance of symplasmic transport is likely to be the reason for the observed delayed floral transition in these mutants.


Subject(s)
Flowers/metabolism , Hordeum/metabolism , Plant Proteins/metabolism , Chlorophyll/genetics , Chlorophyll/metabolism , Flowers/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Hordeum/genetics , Meristem/genetics , Meristem/metabolism , Plant Proteins/genetics , Plasmodesmata/genetics , Plasmodesmata/metabolism , Reactive Oxygen Species/metabolism , Singlet Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...